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Abstract. We use Noether's theorem within a restricted class of dynamical transformations 
involving velocity dependence to obtain first integral constants of the motion not available 
as Noether point transformation constants. 

1. Introduction 

The application of Noether's theorem to Lagrangian systems described by a finite 
number of coordinates X I  is usually restricted to the class of point transformations 

t -, 7 ( r ,  X )  X I  +P'(t,  x ) .  

Such transformations, however, do not in general exhaust the symmetry of the system, 
motivating an extension of Noether's results to 'dynamical' transformations which 
include dependence also on the velocities U '  = dx'/dt. A general and modern discussion 
(within an equivalent Hamiltonian context) is presented by Arnold (1978). However, 
here we restrict ourselves to the simple case of one-parameter groups of infinitesimal 
dynamical transformations of the form 

t + 7 = t +&(( t ,  x ,  U )  ( l a )  

X 1 + P 1 = X ' + & f 7 1 ( f , X ,  U )  (16) 

with the descriptors 6 and 77' so restricted as to be at most linear in the velocities. 
With this added minimal generalisation, we show in the following that we are able 
to generate extra Noether constants of the motion not obtainable via point symmetries 
alone. 

2. Noether's theorem and its extension to dynamical symmetries 

We consider physical systems described by n classical coordinates XI, i = 1,2,  . . . , n, 
and satisfying a dynamical law of the form 

Dv'ldt = F'(x,  t )  (2) 

with u '=dx'/dt .  The n quantities x' are taken as coordinates of a point in an 
n-dimensional manifold endowed with a metric g , (x)  relative to which the absolute 
derivative Dldr is defined in the usual way via Christoffel symbols {;k}. The time r is 
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considered here as a scalar parameter and is allowed to enter into the generalised 
force vector field F' as such. Thus from the point of view of (time independent) 
coordinate transformations on the manifold 

X I  + X I  = x ' ( x )  (3) 
the equation of motion (2) is to be viewed as a vector equation. In this form it covers 
the usual equations of mechanics if we take the metric g, (x )  as defined by the kinetic 
energy 

(4) 1 ,  T=$g, ,u  U . 
In this work we shall also restrict to mechanical systems that possess a Lagrangian 

L = T + V ( t, x ) ( 5 )  

F' = -g"V  (6 )  

as a consequence of which the force vector F' reduces to a gradient 

with g" the contravariant metric tensor. A comma denotes both here and in what 
follows partial differentiation with respect to any subsequent indices. In mechanical 
situations, one is generally concerned only with a flat manifold where the metric 
components g,, may, in appropriate coordinates, always be reduced to constants. 
However, this could be otherwise in some problems, such as particle motion in general 
relativity in which case the space-time metric is identified with g,, and t plays the role 
of an invariant path parameter such as proper time. 

For subsequent use we expand the absolute derivative in (2) and write the equation 
of motion also in the alternative non-covariant form 

d '  = -g"v . ,  -{,.;}u'uk 

with 
(7) 

v '  dv'ldt. 

We now consider general one-parameter groups of infinitesimal dynamical transfor- 
mations of the coordinates x '  and the time t, as set out in ( l ) ,  with E the infinitesimal 
group parameter and 6 and 7' a set of n + l  functions to be determined. This 
transformation ( 1 )  has the 'active' geometrical interpretation of mapping one trajectory 
into another. In contrast, the (passive) coordinate transformations of (3) do not 
interchange trajectories; they clearly require the n quantities to transform as a 
contravariant vector and the single quantity 6 as a scalar (since both t and T are to 
be invariant parameters). 

The transformation (1) automatically determines how the successive time deriva- 
tives U', U', etc, behave under the group. Thus correct to first order in the infinitesimal 
group parameter E ,  we readil) deduce that an arbitrary function W t ,  x ,  U, . . .) experien- 
ces a first-order (in E )  change given by 

s*=  &U* 

where U is Lie's 'extended' operator 

Here we may truncate the definition (8) to only the first three terms shown, since we 
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shall not require the action of U on functions 9 involving higher time derivatives 
than V I .  

The Noether theorem (Noether 1917, Hill 1951, Lutzky 1979) now asserts the 
basic result that under the general class of transformations of the type ( l ) ,  the quantity 

(9) 

is a constant of the motion, provided the unknown quantities 6, q' and the scalar 
function f =f(t, x )  satisfy the condition 

(10) 

@= (&U' - T')(aL/av') - [L + f 

UL + (L - f = 0. 

g , , (D~ ' /d t )d  -q 'V, ,  -[V,,+iL-f=O. ( 10') 

This criterion may alternatively be expressed in the covariant form 

Here a comma followed by a subscript t denotes the operation a / a t  and clearly does 
not affect the tensorial character of the object on which it acts (e.g. V., is a scalar). 

In the conventional applications of Noether's theorem where one restricts to point 
transformations by setting 

5 = t ( L  x )  77' = q ' ( 5  x )  

it is possible to decompose the Noether condition (10) generally into a further set of 
equations (viewed as constraint eliminating conditions) by equating to zero the 
coefficients of successive powers of the velocity U'. A solution of these equations then 
supplies the unknown quantities 5; q' and f and leads via (9) to the constants of the 
motion @. 

When dealing with dynamical transformations, on the other hand, the analogous 
procedure does not work since one cannot in general isolate powers of the velocity 
within the condition (lo),  due to 6 and q' being themselves velocity dependent in an 
unspecified way. This difficulty is, however, circumvented if one assumes a particular 
form of velocity dependence for these functions. We shall here take the rather simple 
linear dependence 

Here x', =x',(t ,  x )  has to be a mixed second-rank tensor for q' to be a vector. In 
contrast to the n components of q' in point transformations, it has n 2  components to 
be extracted via the Noether criterion (10) and so clearly a considerable indeterminary 
still remains. The resulting conditions for no constraint here take the form (on 
eliminating r j '  whenever it occurs with the aid of (7)) 

Viewing these conditions (12), it appears appropriate to restrict xii to be a symmetric 
tensor. In particular, the following two specialisations prove useful: 

(i) xi; = a g i j  (13) 
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with U =a([, x )  a scalar; 

(4 x,,  = a p d , j  + b ( p  A ) g l ,  (14) 

with A = A ' ( t ,  x ) ,  p '  = p ' ( t ,  x )  vectors, a and b free constants and the usual dot product 
defined as 

k A * p ' h  pk. 

Taking the first form (13)  for x,, and substituting into (12) ,  we get immediately 

U =constant 

while a non-trivial symmetry exists (i.e. cr f 0) only if the potential V has the form 

V ( t ,  x )  = V , ( x ) + h ( r )  

f = -2aVo 

in which case we get 

with the consequent Noether invariant 

@ = - 2 u ( g , , u ~ u ~  + VO(X)). (15) 

For mechanical problems with h ( t )  =0 ,  (15) is just the familiar result of energy 
conservation and obtained by a considerably different procedure in textbooks of 
mechanics (e.g. Landau and Lifshitz 1960). 

The  form (13) of x,, with the single function U is restrictive enough for the Noether 
criteria (12)  to determine completely this one  unknown as a constant and so supply 
the corresponding single Noether invariant 0 of (15). However, the situation is 
different for the second assumed form (14) for x,, where the same criteria are no 
longer sufficient to fix all the unknowns. For this reason we make a number of further 
simplifications. Firstly, in order to satisfy (126)  we insist that p '  and A ,  d o  not involve 
the time parameter t, i.e. pf,r  = A ' , l  = 0. Secondly, we restrict discussion to mechanical 
situations with a flat manifold and using coordinates in which g,, = diag(1, 1, , . . . , 1 ) .  
As a result we may in the subsequent equations write all indices (including coordinate 
labels) as lower indices, since contra and covariant are no longer distinguished. Thirdly, 
we specify one  of the two fields, p f ( x )  say, to have arbitrary constant components in 
these coordinates. O n e  is then left with the two equations, subject to the restriction 
that f = f ( x )  as required by ( 1 2 4 ,  namely, 

(16) 

(17)  

The first equation may be solved for A,  using the arbitrariness of the pI. Thus 
contracting with g,, and equating the coefficienis of the pI to zero gives 

a[F(lA,),k + P d , ) . ,  + P ( , A k ~ , , I  f b[g, , (p  A 1.k + g k i h  ' A 1,) f &k(p ' A ) , I ]  = 0 

2[ap(lA/&k i- b ( @  ' A )&I v,k + f . l  = 0. 

[ a  + ( n  +2)b]A,,k +aAk,, +ah/./& = o  (18) 

with n the dimension of the manifold. 
An immediate solution is 

Aj=pj pj  =constant 

a, b arbitrary. 
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A further possibility arises by contracting (18) with g i k  to yield 

(n + 2)(a + b)Al,l= 0 

and setting a + b = 0 (instead of AI,, = 0), thereby leading to the equation 

-(n 1 ) A i . k  A k . i  + A / , f g k i  = 0. 

This has beside (19) above, the non-constant solution 

A I  = a x ,  +pi 
a + b = O .  

a, pi =constants 

3. Application to physical problems 

In this section we apply the above results to the examples of the isotropic harmonic 
oscillator and the classical Kepler problem. In both cases the Noether point group is 
smaller than that associated with the equations of motion and so it is of direct interest 
to see that our extension to velocity dependent symmetries of the very simplest linear 
type is able to generate the extra constants of the motion in a straightforward way. 

3.1. Isotropic oscillator 

Here we have 
v = ' 2  2 2 2 

2w ( x ,  +x2 +.  * .+x,). 

Substitution into (21)  yields the equations 

f , ,  =-2w2[ap(,Ak,xk + b ( p  *A)xtI. 

Of the two possibilities for a, b and A,,  only (19) yields a non-trivial solution for 
symmetry, as can be readily seen upon substitution. For this non-trivial case we 
further set b = 0, since the possibility a = 0, b # 0 just leads to energy conservation 
as already covered by (15). Now setting a = 1, without loss of generality we have 

f , i  = -2w2p(ipk$k 

which has the solution (apart from an additive constant that may be dropped) 

f = -w2p(@k)XiXk 

and gives the Noether constant 

a=- p(  i p k  ,( U + w2xix ). 

The arbitrariness of the constants pi, pi in turn demands the separate conservation of 
the n ( n  + 1 ) / 2  quantities ( u i u k  + w 2 x ' x k ) .  They do nor arise as Noether point constants 
and were originally written down by Fradkin (1965) from more or less intuitive 
arguments. Since then they were rederived via the Lie method of direct invariance 
of equations of motion (Leach 1981) and the present dynamical Noether approach 
complements the above methods. 
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3.2. The Kepler problem 

Here for n = 3 we have 
2 2 2  V = -K / r  r 2 = x x 1  +x2 + x 3 .  

Equation (1 7) becomes 

The first type of solution (19) for hi allows as the only non-trivial possibility the choice 
a = 0, b # 0 which again just corresponds to energy conservation as in (15). The 
second type of solution (21) gives the equations 

which, provided all pi are set to zero, leads to a non-trivial symmetry with 

f = -Kaa(p  * x ) / r .  

Additive constants in f are disregarded. New setting ua = 1, without loss of generality, 
we obtain the Noether invariant 

The three separate coefficients of the arbitrary pi are just the conserved components 
of the classical Runge-Lenz vector 

R = U x (x x u ) - K x / r .  

This again can be derived using a point transformation with the aid of the direct Lie 
method (see Prince and Eliezer 1981) but not as a point Noether invariant. 

4. Concluding remarks 

We have shown that within reasonable limitations it is possible to place dynamical 
Noether transformations on a systematic footing and thereby considerably extend the 
usefulness of Noether's theorem. In fact the theorem has already been applied in the 
past by Levy-Leblond (1971) to linear dynamical transformations but written down 
bnly in an ad hoc manner for a number of problems (including those treated here), 
and it is hoped that our present contribution will add a suitable basis to this otherwise 
instructive work. 
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